
International Journal of Software Engineering and Computer Systems (IJSECS)

ISSN: 2289-8522, Volume 3, pp. 71-87, February 2017

©Universiti Malaysia Pahang

DOI: http://dx.doi.org/10.15282/ijsecs.3.2017.5.0027

71

REVIEWING AND APPLYING SECURITY SERVICES WITH NON-ENGLISH

LETTER CODING TO SECURE SOFTWARE APPLICATIONS IN LIGHT OF

SOFTWARE TRADE-OFFS

Kamel Hussein Rahouma

Department of Electrical Engineering

Faculty of Engineering, Minia University

Minia, Egypt

e-mail: kamel_rahouma@yahoo.com

ABSTRACT

Important software applications need to be secured by choosing the suitable security

services. In this paper, a shopper program is designed and implemented using VB.NET

to follow up the movement of goods in the store and the shopping place. The program

uses five files to store: the passwords, the information of goods in the store and the

shopping place. A literature review is carried out to collect the information system and

software trade-offs. The applied security services are then analyzed in light of these

trade-offs. For security purposes, files and folders are hidden and files are set to Read-

Only. The files' contents are encrypted by applying XOR operation with a random key

generator. The file's contents are hashed and signed by the user to protect the integrity

and authenticity of the files' contents. The applied security services do not result in

much complexity and thus it does not affect the system resources. The program usability

is easy to handle. The software is not freely available and in case of hunting a copy, it

would be hard to run it without disclosing the needed keys. Applying the Arabic letter

coding adds more credit to the program usability and availability.

Keywords: Software Protection; Security services; Encryption/decryption; Hashing;

Digital signature

INTRODUCTION

Software piracy and tampering is a well-known threat the world is facing. Researchers

gave many suggestions, techniques and algorithms to protect software from reverse

engineering and tampering. Software developers and crackers are seemingly in a war to

get the upper hand over each other. Software industry suffer always from software

piracy, especially after the advent of the Internet and the availability of many software

analysis and hacking tools (Wang et al., 2001).

Computer software companies' investment of time, money and intellectual capital is

demanding to protect their assets of software production. Risk, theft and misuse are

main threats to the software once it is produced. Tens of billion dollars are estimated as

the loss by the software industry due to software piracy alone. Not only piracy, but also

software tampering is a worrisome possibility (Jan M et al., 2007).

Software protection can be done to the code and/or to the executable programs

and/or the output results of running software programs. Attacking software programs

may be done in the form of modifying or omitting critical checks, such as license

Reviewing and applying security services with non-english letter coding to secure software applications

 in light of software trade-offs

72

checks, or key checks of functionality. Software developers suggested and employed

many approaches to protect software such as: block and multi-block hashing schemes,

the widely used hardware based approaches, obfuscation, Guards, cryptographic

techniques, watermarking techniques. Information security concerns with protecting

information availability, privacy and integrity. Computer database include highly

business and individuals information which need to be kept confident, secret and not

given for public (Wang, 2005; Koko and Amin, 2015).

In this paper, we are interested in protecting the executable software programs and

their output information. This is done by applying cryptographic and hashing

techniques. The cryptography techniques are classified on the basis of their key

selection into:

Symmetric (Private) Cryptography:

In symmetric or private-key or secret-key encryption the same key is used for

encryption and decryption. Data are encrypted using the private key to become

unintelligent. Exclusive OR is the slightest algorithm to be applied for that purpose and

it can make the system nearly tamper proof. Users must update the main and sub keys.

Exclusive OR algorithm is effective and fast as compared to asymmetrical key

cryptography. Keys in symmetric key cryptography are at the encryption side and sent

to the receiver side to carry out the decryption algorithm (Singh and Mandeep, 2014).

Asymmetric (Public) Cryptography
In asymmetric cryptography, a pair of keys is used. The first key is used to encrypt a

message and the second one is used to decrypt it. One of the keys is made public and the

other is kept private. The two keys are generated simultaneously and they are prime

numbers. Asymmetric cryptography is more secure that private key cryptography but it

consumes more computational power and takes more processing time such that extra

hardware is required (Singh L et al., 2014).

Modern Cryptography
In modern cryptography, a combination of both public key and private key is used.

Once key is used to encrypt the plain message and the other one is used to decrypt the

encrypted message. When the private key is used to encrypt the plain message, the

process is entitled under the digital signature. Using the private key helps to have a fast

speed process and using the public key helps to secure it. Using the pair of keys helps to

avoid the key transportation and provides the power to the users to generate their own

keys of variable length. This also gives the flexibility to upgrade the key at any interval

of time. In modern cryptographic techniques; certification authority is used to keep the

track of the entire system and keys (Singh and Mandeep, 2014).

The generation, modification and transportation of keys have been done by the

cryptographic algorithm. There are many cryptographic algorithms available in the

market and their strengths depend upon certain criteria. Some important cryptographic

algorithms include: Data Encryption Standard (DES), International Data Encryption

Algorithm (IDEA), Blowfish, Triple DES (TDES), Advanced Encryption Standard

(AES), Twofish, RSA, Diffie-Hellman, Elliptic Curve Cryptography (ECC), Pretty

Good Privacy (PGP), Public key infrastructure (PKI) (Singh and Mandeep, 2014).

Kamel Hussein Rahouma /International Journal of Software Engineering and Computer Systems 3(2017) 71-87

73

This paper includes five sections. Section one is an introduction and section (2)

introduces the security services to be applied in this paper. In section (3), a literature

review is carried out to collect the information system and security trade-offs and then

an analysis and a discussion of the applied security services is done in light of these

trade-offs. Results of the analysis are given in section (4) and some conclusions are

highlighted in section (5) and a list of the used references is given at the end of the

paper.

APPLYING THE DECURITY SERVICES TO PROTECT SOFTWARE

Mostly, owners of software applications need some security that helps them control and

follow up the events running by their software. Owners of software need to guarantee

the protection of their applications against insider and outsider attacks. For instance, a

shopper's owner may like to guarantee that the shopper employees are not cheating on.

In this paper, some security services are applied to fulfill these needs such as:

i. Hiding the files and folders of transactions (by using the attribute "hide"),

ii. Denying the access of these files and folders (by setting the attributes of some

files and folders to Read-Only),

iii. Using encryption,

iv. Using hash functions (to guarantee the integrity of the files' contents) and

v. Using digital signature (to record the signature of the users).

Each of these services helps the software owner to control and follow up the use of

the software. However, the security services can be applied to any similar software.

Visual Basic DOT NET programming language is used for the implementation.

Analysis of the security services, applied to the software, will be discussed in light of

the security criteria. Next section discusses the application of the security services and

section (4) discusses the security criteria, while section (5) analyzes the applied security

services in light of the security criteria. The shopper program is designed for the

purposes of storing goods, selling goods, following up the movement of goods in a daily

basis. VB NET is used to implement the program. The program has the following

operations:

i. Preparing the program for the first time

a) The passwords b) Data and database files

ii. Movement of goods in and out of the stores.

a) Adding new goods. b) Changing information of goods

c) Making a report

iii. Movement of the goods in and out of the shopping center.

a) A new customer service. b) Adding new goods.

c) Changing information of goods d) Making reports

Some of the last operations and processes need to be protected and some of them do not.

When the program starts running for the first time, a test is done to check if the folder

"c:\shpdat\" is found or not, if not, then it is created. Then, the password of running the

program is set by entering it twice to verify its correctness. A file is opened by the name

"file1.txt" and used to save the date and password of running the program, in their plain

text and encrypted forms and their hash block. Then, the files (file2.txt – files3.txt –

file4.txt) are created. The files are used as follows:

Reviewing and applying security services with non-english letter coding to secure software applications

 in light of software trade-offs

74

i. File1.txt is used to records the Input/Output information including encrypted

passwords, hash blocks, date of accessing files.

ii. File2.txt is used to record the movement of good in/out of the store. Contents of

the file include records for every good, such as: the number, the name, the price,

the quantity.

iii. File3.txt is used to record the movement of goods in/out of shopping center.

Contents of the file include records for every good, such as: the number, the

name, the price, the quantity.

iv. File4.txt is used to record the daily movement of good in the shopping center.

Contents of the file include records for every good, such as: the number, the

name, the price, the quantity.

In the following subsections, we discuss a group of the protection tools and techniques

that can be used with any software. These tools and techniques include:

i. Passwords of running software and accessing the different files.

ii. Controlling the files and folder attributes such as: 1) hiding, 2) Read only.

iii. Encryption/Decryption of data and information.

iv. Hashing the files' contents.

v. Signing certain parts in the used files.

vi. RSA Cryptography Algorithm.

vii. Coding the Arabic letters

Passwords of Running Software and Accessing Files

Passwords are a tool that protects the access of applications and/or software. Choosing

passwords is critical and crucial. Experts advise users of computerized access to select

their passwords in clever ways. The following tips are important for password uses

(Stallings, 2013):

i. Capital letters and small ones, as well as numbers and symbols should be

included in the passwords.

ii. Length of the password can as long as it can be and it is advisable to change it

from time to time.

iii. Passwords must be changed from time to time with short periods of gabs

between them.

iv. Passwords are not saved in plain text but they are encrypted. It should be noted

that passwords may include symbols and non English letters. This means that a

suitable coding is needed. The coding with utf8 is found to be suitable

(Stephens, 2005).

Controlling the Files and Folders Access

Attributes of files and folders control their access. Hiding and Read-Only are two

important attributes. These attributes can be implemented according to the used

programming language. In the following, we explain how to control these attributes

(Stephens, 2005):

1) Hide Attribute:

When the file attribute is Hidden, the user can not see the file or the folder. This means

that no one can access the folders or files contents. In VB NET, the following code is

used to hide the file or folder.

Kamel Hussein Rahouma /International Journal of Software Engineering and Computer Systems 3(2017) 71-87

75

Dim attribute As IO.FileAttributes = IO.FileAttributes.Hidden

System.IO.File.SetAttributes("c:\shopdat\", attribute)

Figure 1: Code of hiding a folder

2) Read Only Attribute:

When the file attribute is Read Only, the user can open the file and read it. No changes

are allowed to be done to the contents of the file. This means that no deletion or addition

of any information can happen to the contents. In VB NET, the following code is used

to change the attribute of the file and folder to Read Only.

Dim attribute As IO.FileAttributes = IO.FileAttributes.ReadOnly

System.IO.File.SetAttributes("c:\shopdat\file1.txt", attribute)

Figure 2: Code for file Read_Only attribute

Encryption/Decryption of data and information

Encryption changes information to an un-understood form and thus they can be

protected from being disclosed. The most secure cryptographic systems are very much

affected by specifications or programming errors. No amount of unit testing will

uncover a security' vulnerability in a cryptosystem. Keys can be discovered and

consequently the cipher texts can be deciphered. Thus, the difference between a security

system and another lies in how long it is needed to break the system and/or obtain the

keys. The success of attacking a security system depends on the used keys, as well as

the used algorithm. Length of the used key is an important standard that affects the

speed of running the software. The speed of software may be also affected by the

encryption algorithm. Thus, we compromise between the used keys and algorithms and

speed (Boneh and Shoup, 2015). There are two main types of algorithms for encryption.

These are the symmetric key encryption, and the public key encryption. In the

following, we describe how to generate the keys in both of the types (Stalling, 2013).

Symmetric (private key) cryptography:

For this type of algorithms, one secret key is used for encryption and decryption. The

secret key can be generated by using any good random number generator. The output of

the random number generator is used as a key to encrypt the text. When we need to

decrypt the cipher, we simply run the random number generator and use its output to

decrypt the message and obtain the plain text. Thus, if the random number generator is

really good, it will give good results. Good results here mean that no way, an attacker

can use output random numbers to obtain the original information the generator uses. In

this case, we can simply use the XOR operation to encrypt the plain text at the sender

and decrypt the cipher at the receiver to obtain the plain text.

However, with computers, we can not pretend that the generated keys are really

random, but to be fair, we can say they are pseudo-random keys. Thus, depending on

the cycle of the pseudo-random generator, we can assure that the used keys are strong or

not. A good pseudo-random generator can be designed using the following chaotic

equation (Boneh and Shoup, 2015; Rahourma, 2000):

Xn+1 = r * xn * (1 – xn) (1)

Reviewing and applying security services with non-english letter coding to secure software applications

 in light of software trade-offs

76

With 3.57 ≤ r ≤ 4 and 0 ≤ x0 ≤ 1, the obtained sequence of numbers is really pseudo-

random. The time of logging into the program is used to generate these values. Seconds

are divided by 60 to give x0. Minutes and hours are concatenated (as strings) and then

taken as a number and divided by 6024. If the result is greater than 0.4 then it is

multiplied by 0.4 and added to 3.57 and if it is less than 0.4 it is directly added to 3.57.

This gives the value of r. Xn+1 is set to a double format and it is treated to obtain the

encryption key as follows:

i. The information are divided into fixed length blocks (e.g., L=16 bytes).

ii. The right L bytes from xn+1 are taken as the key which we XOR with the plain

text to obtain the encrypted cipher.

iii. The encrypted block is XORed with the same key to obtain the original plain

text.

The equation (1) uses an initial seed x0 and a bifurcation factor r to compute

recursively values xn+1. Knowing the numbers of the sequence does not help any

attacker gets the values of r and x0. Thus, the obtained numbers are used as

encryption/decryption keys. With such good keys, we use a block cipher algorithm of

the simple XOR operation for encryption/decryption. The files' contents that are used by

the program are divided into fixed length blocks. Each block is encrypted using a

different key that is generated from the random number generator. Figure 3 gives the

block diagram of the encryption process.

Figure 3: Block diagram of the. XOR encryption process

Asymmetric (public key) cryptography

For this second type, two keys are used: one of them is kept secret, and the other is

published. One key is used for encryption and the other key is used for decryption. The

two keys can be gene. Using the pair of public and private keys plays an important role

in asymmetric cryptography. The public key is published and used by people while the

private key is kept secret and used by the owner. Public key cryptography depends

always on the cryptographic algorithm. Thus, a hard mathematical problem lies behind

the used algorithm. Examples of such hard problems: the discrete logarithm problem,

the elliptic curve problem, etc. However, the two keys have a very important

characteristic. Encrypting a message with the public key is reversed (i.e., decrypted to

the same message) by using the private key. Thus, the effect of the public key in the

encryption algorithm is cancelled by the effect of the private key in the decryption

algorithm. Because of the computational complexity of asymmetric encryption, it is

usually used only for small blocks of data, typically exchanging the symmetric

cryptography keys, digital signature, message authentication codes [Stinson, 2003;

Smart, 2013; Ruohonen, 2014).

Kamel Hussein Rahouma /International Journal of Software Engineering and Computer Systems 3(2017) 71-87

77

Hashing of Plain Texts and Message Authentication Code (MAC)

When the symmetric key cryptographic technique is used to provide message

authentication, it is called a message authentication code (MAC). To establish a MAC

process, a private key K is shared by the sender and the receiver. A MAC is simply an

encrypted checksum generated from the processed message and sent along with it to

ensure its authentication. Figure (4) presents the generation of the MAC and figure (5)

explains how to use that MAC to authenticate the plain text message.

Figure 4: Generating the message authentication code (MAC) at the sender.

Figure 5: Regenerating MAC at the receiver and authenticating the received message.

The MAC algorithm

The steps of MAC algorithm are (Stallings, 2013):

i. At the sender side, some publicly known MAC algorithm is used to process the

message and with a secret key K to produce a MAC value.

ii. A MAC function is used to compress any arbitrary long input message into a

fixed length output block.

iii. The plain text message and the MAC block are sent to the receiver for

authentication. If confidentiality is needed, the message and its MAC are

encrypted.

iv. At the receiver side, the message is processed in the same way like it was

processed at the sender side using the same private key, to produce a new MAC

block.

v. The receiver compares the received MAC block to the new computed MAC

block. If they match, then the received message is accepted as an authentic and if

they do not match then, the original message (which was sent by the sender) is

known to be changed.

The contents of a file can be hashed as follows:

i. The file contents are divided into fixed length blocks (e.g., L=16 bytes).

ii. An initial hash block is generated, from the pseudo-random number generator,

and used to hash the blocks with the XOR function.

iii. A final block is obtained which is saved as the hash of the file.

To check the file contents for any change, we simply obtain the contents hash and

compare it to the one saved in step (3). In case they are equal then the file contents are

not changed and if not, then the contents are surely changed.

Reviewing and applying security services with non-english letter coding to secure software applications

 in light of software trade-offs

78

Limitations of MAC

There are two major limitations of MAC, both are due to its symmetric nature of

operation (Stallings, 2013):

i) Establishment of Shared Secret.

a) Authentication is done between only legitimate users.

b) Shared secret channels are needed prior to use of MAC to exchange the secret keys.

ii) Inability to Provide Non-Repudiation

a) A MAC technique does not prove the origin of a received message.

b) Thus, the sender can deny the responsibility about sending the message and claim

that the receiver forged it.

Both of the above limitations can be overcome by using the public key based digital

signatures discussed in following section.

Signing the MAC with RSA Cryptosystem

Digital signature is a security service allows people to sign documents electronically.

Two keys are needed to complete this process. These are the private key and the private

key. The sender uses the private key to encrypt the plain text message and the receiver

uses the public key to decrypt the received encrypted message and obtain the original

one. Because only the sender knows the private key, he cannot deny sending the

message if the receiver succeeds to obtain the original message using the sender's public

key. This is because only the sender's public key can be used to decrypt the received

encrypted message. This confirms the signature of the sender. Generation of the secret

and public keys has its rules and algorithms [10-12]. Figure (6) explains the signature-

verification process.

Figure 6: The signature-verification process

To generate the key pair (e, d), choose two random prime numbers p and q of equal

lengths (for maximum security). Then compute:

n=p * q and =(p-1) * (q-1) (2)

A value e is randomly chosen as the encryption public key. This is done such

that: 1) the greatest common divisor gcd(e, )=1 and

2) e * d=1 mod  where d is the decryption private key.

This means that:

d=e
-1

 mod  (3)

Thus (e,n) are made public and d is made private. We notice that the two numbers p and

q are no longer needed. However, the keys e and d can be interchanged.

To encrypt a MAC (M) where: M is smaller than n, with (M, n) are of the same size, the

block M is processed according to the following equation:

C=M
e
 mod n. (4)

Kamel Hussein Rahouma /International Journal of Software Engineering and Computer Systems 3(2017) 71-87

79

The idea here is to transform e into a binary form and M = the symbol (') which has the

ascii representation of 96

Assume p=17 q=19 N = p*q = 17*19 = 323

=(p-1) * (q-1) = 16*18 = 288 e = 13 d=(13)-1 mod 288 = 133

The RSA Cryptography Algorithm

Rivest et. Al., in (1978) invented the RSA. The RSA gets its security from the

difficulty of factoring large numbers. The public key pair (e, d) are functions of a pair of

large prime numbers p and q (100 to 200 digits or even larger). Obtaining the plain-text

message from its cipher-text form using the public key is equivalent to factoring n to its

factors p and q (Stinson, 2003; Smart, 2013; Ruohonen, 2014). Encrypting M is done as

follows:

C = (96)13 mod 323 = (96)1101 mod 323 = 96 * 96^4 * 96^8 mod 323

We can notice that the process is simply squaring the first multipliers to get the second

multiplier and squaring the second multiplier to get the third multiplier, and so on.

Then, for k binary bits the total multiplication value xy is computed as follows:

Assume that y)10 = (bn bn-1 ……… b2 b1)2

xy mod = MULT (a^bi*(2^(i-1))), = 1, 2, 3, ….., k

Thus:

9613 = 96 * (96^2 * 96^2) * (96^2 * 96^2)^2 mod 323 = 96 * (9216 * 9216) * (9216 *

9216 * 9216 * 9216) mod 323 = 39 * 9216 * 9216 * 9216 * 9216 * 9216 mod 323 =

248 * 9216 * 9216 * 9216 * 9216 mod 323 = 20 * 9216 * 9216 * 9216 mod 323 = 210 *

9216 * 9216 mod 323 = 267 * 9216 mod 323 = 58

Thus, the cipher of (') = (:)

To decrypt a received cipher C compute:

M’=C
d
 mod n = 58133 mod 323 = 96

The obtained M’ is the same as M because

C
d
 = (M

e
)
d
= (M)

e.d
=(M)

k(p-1)(q-1)+1
= M . (M)

k(p-1)(q-1)
 = M .1= M .

The RSA is very easy to understand and implement. The crypt-analysis can’t give

any argument about RSA security and instead, it suggests a confidence level in the

algorithm. The RSA technique can also be applied to encryption and digital signature.

In this case the following points are considered to make the use of RSA algorithm more

secure (Stallings, 2013):

i. Random messages received from strangers are not signed unless a one-way hash

function is firstly used.

ii. Sharing a common a common modulus n among a group of users is not

preferred.

iii. The processed block must be smaller than n and they must be of the same size.

Padding with certain values may be needed if the last message block size is less

than that of n.

iv. The decryption exponent (d) should be large.

Note:

1- Two parties (A, B) use their special keys (eA, dA, nA) and (eB, dB, nB) respectively.

2- The large modulo number from (nA, nB) is used first.

Reviewing and applying security services with non-english letter coding to secure software applications

 in light of software trade-offs

80

3- Some people have mixed RSA with conventional crypto-systems (e.g. block cipher

ones) and digital signatures.

The following algorithm is used in RSA (Rivest et al., 1978; Rajdeep, 2015),
i. Choose p and q as two random big prime numbers.

ii. Calculate n = p * q

iii. Calculate φ(n) = (p - 1) * (q - 1)

iv. 4. Choose e such that: 1) 1 < e < φ(n) 2) (e, n) are co-prime.

v. Calculate a value (d) where (d * e) % φ (n) = 1.

vi. Make (e, n) as the public key.

vii. Make (d) , n) as the secret key.

viii. For encryption, calculate C=me mod n

ix. For decryption, calculate m =Cd mod n)

The above algorithm is applied to the plain text to obtain the encrypted form or cipher

text. Then, the encrypted message is decrypted to plain text. The main disadvantage in

RSA cryptographic is its encryption speed. The RSA algorithm consumes a lot of time

to encrypt data. This is disadvantage is almost common between all the asymmetric key

algorithms because of the need to compute the exponent of big blocks to big numbers.

However, the RSA provides a good level of security but it is slow for encrypting files.

Another threat in this algorithm is to change the decryption key and thus it must be kept

secret. When a file contents are hashed, the final block is signed using the RSA system.

Thus, every user of the program will have a private key and a public key. These keys

are stored in the file "file1.txt" and the public keys of the users are known to everyone

while the private keys are kept secret to their owners. The program checks the signature

of the hash by applying the RSA algorithm.

Encoding Arabic Alphabetics

When the password contains arabic letters, it needs to use the utf-8 coding not the ascii

coding. Then, every letter in the password will be transformed into two hexadecimal

digits. The followuing code is implemented for coding and decoding Arabic

alphabetical strings.

Dim utf8Encoding As Encoding = Encoding.UTF8

Dim stringvalue, stringspw, stringsd As String

Dim bytes(300) As Byte

stringvalue = strings

MsgBox("Strings to encode= " & stringvalue)

Dim written As Integer = utf8Encoding.GetBytes(stringvalue, 0, stringvalue.Length,

bytes, ind)

ind = ind + written

npw = ind

stringspw = ShowByteValues(bytes, ind)

MsgBox("Encoded bytes= " & stringspw)

Dim newStringd As String = utf8Encoding.GetString(bytes, 0, ind)

MsgBox("Decoded= " & newStringd)

Figure 7: Encoding/decoding Arabic letters

Kamel Hussein Rahouma /International Journal of Software Engineering and Computer Systems 3(2017) 71-87

81

Example of Using utf-8

Assume the password is: "تأمين برنامج المتجر" === meaning "securing the shopper

program"

Number of Arabic letters = 17 letters + 2 spaces

Number of bytes = 36

Notice that the space is treated as one byte because it is already included in the ascii

code. Thus we got

Encoded bytes = D8 AA D8 A3 D9 8A D9 86 20 D8 A8 D8 B1 D9 86 D8 A7 D9

 85 D8 AC 20 D8 A7 D9 84 D9 85 D8 AA D8 AC D8 B1

Figure 8: Results of encoded Arabic letters

ANALYSIS AND DISCUSSION

Information Systems and Security

Over the past 20 years, our society has become increasingly dependent on software.

Today, we rely on software for our financial transactions, our work, our

communications, even our social contacts. A single software flaw is enough to cause

irreparable damage, and as our reliance on software increases, so does our need for

developing systematic techniques that check the software we use for critical

vulnerabilities (Athanasios, 2014).

The software architectural solution should meet the security requirements as well

as the other quality attributes such as performance, availability, usability,

modifiability, etc (Hassan, 2013). Selecting a design solution among multiple options

involves making trade-offs among competing requirements. Security is one critical

requirement among many, which can cause critical trade-offs and severe costs.

Damages from security attacks can be overwhelming and the costs increase every year.

The threat of vulnerabilities and their exploitation by potential adversaries call for

careful analysis of security risks and trade-offs that security solutions impose, from the

viewpoints of both defenders and attackers.

Since software developers and analysts are usually not security experts, detecting

potential threats within software systems can be problematic. Even when threats are

known, the risk factors, either the probability of a successful attack or the resulting

damage of a successful attack, are not always known or numerically measurable.

Selecting proper security solutions can be challenging, when mitigating impacts and

side-effects of solutions are often not quantifiable (Tiwari and Karlapalem, 2005).

If the organization depends on information technology, information security

becomes very important. Confidentiality, Integrity and Availability (CIA) aspects of the

system must be protected security of the used computer based information system.

Increasing the dependence of business processes on information technology increased

the number of attacks against CIA aspects. Achieving a perfect security system is

monetarily and practically infeasible. Thus, organizations use risk management

concepts to forego perfection. Hence, they make tradeoffs in pursuit of security goals

(Tiwari and karlapalem, 2005). However, trade-offs between systems engineering and

security engineering can be summarized in (Reed, 2015) as follows:

Reviewing and applying security services with non-english letter coding to secure software applications

 in light of software trade-offs

82

Figure 9: System engineering and system security engineering trade-offs

Analysis of security services in light of the software trade-offs

In the following, we discuss the software trade-offs and analyze the security services

introduced in this paper.

Security and Complexity

Complexity of software is affecting the utilization of the information system resources,

quality, performance and run time. In the following we give some hints about these

effects:

i) Security Effects

Increasing the software complexity may result from many primitives such as using:

counters and hashing as well as arbitrary code fragments. These primitives require

significant bandwidth, memory and processing resources. The required resources can

affect the accuracy of the eventual measurement (Moshref et al., 2013). The software

complexity affects the software quality. A wide range of solution proposals have been

considered to solve this problem. However, a greater empirical research is required to

evaluate and compare these solution proposals (Sebastian et al., 2012).

 Nowadays, hundreds to thousands of cores per processor are seen by many as a

natural evolution of multicore processors. These multicore processors require a

productive parallel programming model and an efficient runtime. A scalable

synchronization mechanism may be considered as a critical prerequisite for an efficient

runtime to support task coordination at different levels of granularity. However, several

approaches of phase implementation are suggested using software, hardware and a

combination of both to explore their portability and performance (Yonghong, 2011).

ii) Security and Complexity

In the following we discuss the used services according to the complexity and

mathematical computations:

i. Generating the keys of operation is carried out by running a simple chaotic

recursive equation.

ii. Applying the encryption/decryption is carried out mainly by applying symmetric

key cryptography which uses the simple XOR operation. This means that no

much computation is needed and consequently no complexity would result.

Kamel Hussein Rahouma /International Journal of Software Engineering and Computer Systems 3(2017) 71-87

83

iii. Hashing is carried out by using the simple XOR operation between the hashed

blocks. This also does not complicate the computations.

iv. The RSA cryptography is used only for performing the digital signature ad this

makes its complexity effect low.

However, cryptography requires efforts to fulfill security conditions in: the generation

of keys, encryption/decryption and transmission of the messages or saving them. These

issues are always translated into overheads including financial overheads, less

communication channel bandwidth, heat dissipation affecting processors, power

consumption and time delay of processing. For the present work we can highlight the

following points:

Security and Usability
Usability and security become core issues in the design of modern computer software.

Many studies have been conducted in different combinatorial ways of these issues.

However, still there is a room to improve the relationship between security and usability in

the sense of appropriate deployment of these features in software applications (Sahar,

2013). Also, applying the Arabic letter coding adds more credit to the usability of the

program.

Security and Availability

Software availability is reduced with increasing it security. Mostly, software programs

are not freely publicly available. The shopper software is secured and consequently is

not freely available. However, a free trial limited version can be published for

demonstration. Also, applying the Arabic letter coding adds more credit to the

availability of the program.

Security and Anti-Attacking

Using the security services, discussed in the last sections, gives a good protection to the

software. In the following we discuss the different points in this regard (Kakkar et al.,

2012; Kakkar et al., 2010):

i. Hiding the files which are used by the software, makes it hard for the

insider/outsider attackers to reach them.

ii. Using the Read-Only attribute makes it hard for the attackers to change the files'

contents unless the program is legally used.

iii. Using encryption/decryption makes it hard for the attackers to understand what

the contents of the files mean.

iv. Using the digital signature makes it easy to trace people who used the software

and made any changes.

v. Hashing the file contents makes it easy to discover if the contents were illegally

changed or not.

vi. Using the chaotic equation for key generation, pseudo-randomly, makes it hard

to guess the passwords and keys. Also, it is hard to collect the generated

numbers and reversely find the factors of the chaotic equation.

vii. Encoding Arabic alphabets helps the administrator to use Arabic letters in

passwords and keys.

Reviewing and applying security services with non-english letter coding to secure software applications

 in light of software trade-offs

84

Key management

In modern, users have their own keys which need to be kept secret. Also, information

about the data, which are used to obtain the keys, must be kept secret. In practice,

Individual users use different keys. A security systems is much affected by the number

of keys, length of keys and their generation and transportation (Kakkar et al., 2010;

Verma et al., 2012). An attacker may succeed to attack the system but fail to expose the

information because they are protected. Attacker may then try to crash the information

by damaging them. This means, some techniques are needed to protect the information

from being crashed. This can be done by protecting the documents and files from being

accessed and/or changed. Multiple keys for individual user maybe then a good solution

to increase information protection but this increases the calculations and consequently

slowdown the speed of information processing.

RESULTS

Securing software programs lies in a critical area of research. Research has been done to

determine the trade-offs and criteria for software production and to include or embed

security services in software programs. Increasing software security reduces its

complexity and consequently exhausting its resources and running time. Practically,

people compromise between increasing security and speeding up the program execution

speed. However, in the following, we give some of the advantages of using the security

services in the present work.

i. The attributes of "Hide" and "Read-Only" are used to protect the files and

folders from being freely accessed by illegal users.

ii. Using the chaotic equation for key generation, pseudo-randomly, makes it hard

to guess the passwords and keys. Also, it is hard to collect the generated

numbers and reversely find the factors of the chaotic equation.

iii. Encoding Arabic alphabets helps the administrator to use Arabic letters in

passwords and keys.

iv. Encrypting the files' contents makes it hard for to get the plain information of

these contents without using the same keys XORed with the cipher. However,

using the XOR keeps the encryption/decryption processes fast.

v. Hashing the file contents yields a possibility of checking up the integrity of these

contents.

vi. Signing the hash block using the RSA algorithm allows us to follow up the users

who used the program. It is well known that breaking the RSA system is hard

because it depends on reversing the modulo-exponent.

vii. The applied security services do not result in much complexity and thus running

the software does not affect the system resources. The program usability is easy

to handle but its availability is not much because the software is not freely

available and in case of hunting a copy from the software, it would be hard to

run it without disclosing the used keys.

viii. Applying the Arabic letter coding adds more credit to the program usability and

availability.

Kamel Hussein Rahouma /International Journal of Software Engineering and Computer Systems 3(2017) 71-87

85

CONCLUSIONS

Software programs have spread in all sectors of our daily life. Software owners

always like to secure their programs such that their data files are safe and cannot be

easily attacked. The shopper program was designed by the author and used here to apply

some security services for protection. The program uses 5 files to store its data to follow

up the movement of goods in the store and in the shopping place. The first file is used to

save the information of the users. The second and third files are used to record the

movement of goods in the store and in the shopping place. The fourth and fifth files are

used to record the daily movement of goods in the store and the shopping place. Visual

Basic Dot NET is used to produce the application. From the security service applied in

this paper: 1) Hiding the file and folders, 2) Read-Only attribution for the files' contents,

3) Fast Stream Cipher Encryption using a random key generator, 4) Hashing the

contents of files, 5) Signing the hash of the file. A literature review was done to collect

the software trade-offs. Then, the applied security services were analyzed in light of the

software trade-offs. Results show that software complexity is considered a main trade-

off because it affects the systems resources, usability and availability. Applying the

Arabic letter coding adds more credit to the program usability and availability. Data

files and folder can be protected by using the attributes of "Hide" and "Read-Only".

Using the XOR encryption/decryption does not affect the software performance and run

time. Using the chaotic equation to pseud-randomly generate the used keys made it hard

to attack the software because collecting these numbers does not help to disclose the

equation factors (bifurcation factor r, the constant a and the initial value of x0). The

contents of files are encrypted before saving them and decrypted when the programs

reads them for use. Contents of files are hashed and then signed. This makes it easy to

trace the users who used the program and makes it easy to check up if the contents were

changed or not. The RSA is known sign the hash block of the file contents.

REFERENCES

Athanasios (Thanassis) Avgerinos (2014). Exploiting Trade-offs in Symbolic Execution

for Identifying Security Bugs. A Doctoral Dissertation, Submitted to the Electrical &

Computer Engineering, National Technical University of Athens, ii.

Boneh, D. and Shoup, V. (2015). A Graduate Course in Applied Cryptography. 43, 81-

91, 125-142, 243-265, 301-370. Retrieve from

https://crypto. stanford.edu/ ~dabo/cryptobook/draft_0_2.pdf.

Golnaz E. (2012). Making Trade-Offs among Security and Other Requirements during

System Design. A Doctoral dissertation submitted to the Graduate Department of

Computer Science University of Toronto, ii-iii.

Hassan R. (2013). Security Trade-off Analysis of Service -oriented Software

Architecture. World Journal of Computer Application and Technology 1(4), 110-

120.
Jan M. Memon, Asma Khan, Amber Baig and Asadullah Shah (2007). A Study of

Software Protection Techniques, Innovations and Advanced Techniques in

Computer and Information Sciences and Engineering, 249–253, Springer.

Reviewing and applying security services with non-english letter coding to secure software applications

 in light of software trade-offs

86

Kakkar J., M. L. Singh, P.K. Bansal (2012). Comparison of Various Encryption

Algorithms and Techniques for Secured Data Communication in Multinode

Network. International Journal of Engineering and Technology, 2(1), 87-92.

Kakkar A., Dr. M. L. Singh, Dr. P. K. Bansal (2010). Efficient Key Mechanisms in

Multinode Network for Secured Data Transmission. International Journal of

Engineering Science and Technology, 2(5), 787-795.

Koko, S. O. and Amin B. Mustafa (2015). Comparison of Various Encryption

Algorithms and Techniques for improving secured data Communication. Journal of

Computer Engineering (IOSR-JCE), 17(1), 62-69.

Moshref, M. M., Minlan Yu and Ramesh G. (2013). Resource/Accuracy Tradeoffs in

Software-Defined Measurement. HotSDN’13, Hong Kong, China,73-78.

Rahouma, K. (2000). A chaos-based stream cipher algorithm for high speed networks

and real time applications. Presented and published in the Applied

telecommunication symposium, as a part of the 2000 advanced simulation

technologies conference (ASTC2000), Washington, D.C. USA, 16-20.

Rajdeep B. and Rahul Hans (2015). A Review and Comparative Analysis of Various

Encryption Algorithms. International Journal of Security and Its Applications. 9(4),

289-306.

Reed M. (2015). Systems Engineering and System Security Engineering Requirements

Analysis and Trade-Off Roles and Responsibilities. 18th Annual NDIA Systems

Engineering Conference Springfield, VA, 1-4.

Rivest, R., Shamir, A. and Adleman, L. (1978). A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM, 21(2), 120-

126.

Ruohonen, K. (2014). Mathematical Cryptography: A Translation of Lecture Notes in

Finnish Language. 42-47. Retrieve from http://math.tut.fi/~ruohonen/MC.pdf.

Sahar, F. (2013). Tradeoffs between Usability and Security. IACSIT, International

Journal of Engineering and Technology, 5(4), 434-437.

Sebastian B., Kai Petersen, Mikael Svahnberg, Aybuke Aurum, Hamish Barney (2012),

Software Quality Trade-offs: A Systematic Map. Information and Software

Technology, 54(7), 651-662.

Singh, L. and Er MandeepKaur (2014). Novel Technique of Cryptography algorithm for

Improving Data Security. Global Journal of Advanced Engineering Technologies,

3(4), 394-398.

Smart, N. (2013) Cryptography: An Introduction. McGraw-Hill, 3rd ed., ebook, 109-

119, 153-181.

Stallings, W. (2013). Cryptography and Network Security, Principles and Practice.

Prentice Hall, London, Sixth Edition, 329-331.

Stephens, R. (2005). Visual Basic® 2005 Programmer’s Reference. Wiley Publishing,

Inc., 687-746.

Stinson, D.R. (2003). Cryptography, Theory and Practice. 3rd Edition, Chapman & Hall

CRC, London, 233-273.

Tiwari, R.K., and Karlapalem, K. (2005). Cost Tradeoffs for Information Security

Assurance. 4th Annual Workshop on the Economics of Information Security, WEIS.

Harvard University, Cambridge, 1-3.

Kamel Hussein Rahouma /International Journal of Software Engineering and Computer Systems 3(2017) 71-87

87

Verma S., Rajnish Choubey, Roopali soni (2012). An Efficient Developed New

Symmetric Key Cryptography Algorithm for Information Security. International

Journal of Emerging Technology and Advanced Engineering, 2(7), 18-21.

Wang, C., Davidson, J., Hill, J. and Knight, J. (2001). Protection of software-based

survivability mechanisms. The International Conference on Dependable Systems

and Networks, Goteborg, Sweden, IEEE Press, 193-205.

Wang, P. (2005). Tamper resistance for software protection. M.S. thesis, School of

engineering Information and Communications University, Daejeon, 1-2.

Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.8556&rep=rep1&typ

e=pdf

Yonghong Y., et. al. (2011). Hardware and Software Tradeoffs for Task

Synchronization on Manycore Architectures. 17th international conference on

Parallel processing, Euro-Par'11 - Volume Part II, 112-123.

