
International Journal of Software Engineering & Computer Systems (IJSECS) 

ISSN: 2289-8522, Volume 2, pp. 28-50, February 2016 

©Universiti Malaysia Pahang 

DOI: http://dx.doi.org/10.15282/ijsecs.2.2016.1.0014 

28 

 

 

AFRICAN BUFFALO OPTIMIZATION 

 

Julius Beneoluchi Odili and Mohd Nizam Mohmad Kahar  

 

Faculty of Computer Systems & Software Engineering, Universiti Malaysia Pahang,  

26300 Gambang, Pahang, Malaysia 

Email: pcc14004@stdmail.ump.edu.my 

Phone: +60169455363; Fax: +6095492144 

 

ABSTRACT 

 

This is an introductory paper to the newly-designed African Buffalo Optimization 

(ABO) algorithm for solving combinatorial and other optimization problems. The 

algorithm is inspired by the behavior of African buffalos, a species of wild cows known 

for their extensive migrant lifestyle. This paper presents an overview of major 

metaheuristic algorithms with the aim of providing a basis for the development of the 

African Buffalo Optimization algorithm which is a nature-inspired, population-based 

metaheuristic algorithm. Experimental results obtained from applying the novel ABO to 

solve a number of benchmark global optimization test functions as well as some 

symmetric and asymmetric Traveling Salesman’s Problems when compared to the 

results obtained from using other popular optimization methods show that the African 

Buffalo Optimization is a worthy addition to the growing number of swarm intelligence 

optimization techniques.   

 

Keywords: Graphite; African Buffalo Optimization; Metaheuristics; population-based; 

global optimization; Traveling Salesman’s Problem.  

  

INTRODUCTION 

 

A very common consideration in scientific, business and engineering designs is the 

issue of cost and serviceability, thus, highlighting the need for optimization. Just as 

business organizations are concerned with maximizing profit, so engineering-design 

organizations are concerned with continually maximizing the efficiency of the designed 

products and scientists are continually researching to obtain better results with less input 

of time and materials.  Efficient algorithms are, therefore, required to help solve these 

problems. This gave rise to the development of some traditional algorithms like the 

Newton-Raphson (Ben-Israel, 1966), Linear Programming (LP) (Luenberger, 1973), 

Dynamic Programming (Bertsekas, Bertsekas, Bertsekas, & Bertsekas, 1995), finite 

elements (Ghanem & Spanos, 2003), finite volume methods (Said & Wegman, 2009) 

etc. Similarly, lots of relatively-modern algorithms that draw their inspiration from the 

harmonious, self-organized elements in nature have also been developed. These moden 

algorithms are classified as Natural Computing.  

Natural Computing is simply the process of using the computer to extract ideas 

from nature to develop computational systems or using natural materials such as 

molecules to perform computation. From this definition, it is explicit that natural 

computing can either be drawing inspiration from nature, otherwise called Nature-

Inspired Computing (NIC) or computing with natural materials (CWN). Computing 

with natural materials is one of the most recent computing paradigms where researchers 

mailto:pcc14004@stdmail.ump.edu.my


African buffalo optimization 

29 

 

are working to replace the use of silicons in the development of new software or 

hardware computational tools to those that use natural media (Zang, Zhang, & Hapeshi, 

2010). Nature-inspired optimization algorithms are getting increasingly popular in the 

past few decades in scientific and engineering research all over the world. Researchers 

thrilled by this development have adduced several reasons for this: some of these 

reasons are that they are devloped to mimic the most successful dynamics in biological, 

chemical and physical processes in nature. This situation throws up the issue of choice 

of algorithm (since we now have several of them) whenever a researcher has an 

optimization problem to solve. Generally, there is consensus among researchers, that the 

choice of the ‘best’ algorithm to solve a particular problem is based largely on the type 

of problem one is confronted with. This line of thought is reinforced by the No free-

lunch theorems for optimization (Wolpert & Macready, 1997). In fact, for large-scale, 

nonlinear optimization problems, there is no consensus on the recommended guidelines 

for making a choice of algorithm (Yang, 2011). 

The rest of this paper is oragnised thus: section 2 deals with the review of related 

literature; section 3 focusses on the swarm intelligence techniques highlighting their 

individual strengths and weaknesses; section 4 is concerned with the African Buffalo 

Optimization detailing the nature of the buffalos, their communication and the basic 

flow of the algorithm; section 5 examines how the African Buffalo Optimization 

searches divergent search spaces; section 6 validates the algorithm performance in 

solving Symmetric Travelling Salesman’s Problems; section 7 examines the ABO 

performance in Asymmetric Travelling Salesman’s Problems and section 8 draws 

conclusion on the study.   

 

REVIEW OF LITERATURE 

 

Traditional Optimization algorithms such as the Simplex Method and Newton-Raphson 

are usually deterministic in nature and use the gradient-based approach. They are very 

effective in smooth monomodal problems since they use function values and their 

derivatives in arriving at solutions. However, in situations where there is a break in the 

objective function, these methods encounter great difficulties. In such situations, non-

gradient (derivatives-free) methods which only use function values  such as Hooke-

Jeeves pattern search and Nelder-Mead downhill simplex are preferred (Haftka & 

Gürdal, 2012).  

The traditional optimization algorithms are very good in solving problems with 

large number of decision variables. Similarly, these methods require very little problem-

specific tuning of parameters. Moreover, in addition to their being rather difficult 

optimization techniques, they are very inefficient in multimodal search environments. 

Again, they encounter serious difficulties in solving discrete optimization problems and 

are very weak in handling situations with numerical noise (Arora, 2004; Vanderplaats, 

2007). 
 

Stochastic algorithms 

 

There are broadly two types of stochastic algorithms, namely, Naure-inspired 

Computing (NIC) and Computing with Nature (CWN). Both types make elaborate use 

of heuristics and metaheuristics. Heuristic algorithms simply exploit some information 

about a particular problem in order to solve it. The use of heuristics enables algorithms 

to obtain quality solutions to difficult optimization problems at a reasonable time. 



Julius Beneoluchi Odili et.al /International Journal of Software Engineering & Computer Systems 2(2016) 28-50 

30 

 

However, they are near-exact algorithms. That is to say those heuristic algorithms do 

not guarrantee the exact optimal solutions. Metaheuristics, on the other hand simply 

means ‘beyond heuristics’ and are generally expected to perform better than heuristics. 

In general, metaheuristic algorithms employ some local search in addition to global 

exploration through the use of randomizations. Randomizations help these algorithms to 

steer away from being restricted in a local environment to a more global search. For the 

purpose of this study, we will use heuristic and metaheuristic algorithms 

interchangeably since both are usually non-exact methods but rather employ trial-by-

eliminating-errors approach. The overall aim of any metaheuristic algorithm is to 

achieve the best possible result by using internal mechanisms to achieve adequate 

exploration and exploitation of the search space(Blum & Roli, 2003). 

Metaheuristics, like we shall see in the next section, is generally classified as 

either population-based or trajectory-based. Population-based metaheuristics can be 

traceable to Holland whose works used a combination of  theoritical genetics and 

automata methodology. Since 1962 when Holland published his work, several 

researchers have been attracted to this method of applying variation and diversification 

techniques to a population to achieve results within a search space. Some of these 

methods include Schaffer’s Vector-Evaluated Genetic Algorithm (VEGA)(Schaffer, 

1985); Farmer, Packard and Perelson’s Artificial Immune Systems (Farmer, Packard, & 

Perelson, 1986); Holland’s and Rechenberg’s Evolutionary Strategies (Eigen, 1973); 

Dorigo and Di Caro’s Ant Colony Optimization ACO  (Di Caro & Dorigo, 1998), Grey 

Wolf Optimizer (Mirjalili, Mirjalili, & Lewis, 2014), to mention a few.  

Most population-based techniques exploit some previous knowledge of the 

solution space and use this in the initialization phase to move the search agents towards 

the feasibe region. In situations where this information is absent, the decison vectors are 

distributed uniformly within the search space.  Based on the foregoing discussion, most 

population-based metaheuristics have a format similar to Figure1.   

 

Characteristics of metaheuristic algorithms 

  

Two important features mark out a good metaheuristic algorithms and these are their 

abilities to employ global search mechanism (otherwise called exploration or 

diversification) and local search (exploitation or intensification) mechanism in course of 

a search. While diversification ensures that the algorithm covers as much as it can of the 

search space within a reasonable search time, the intensification ensures that the 

algorithm concentrates a closer search possibly around the areas with promising 

outcomes in addition to selecting the search candidates (decision vectors) that has the 

best results/solutions. An ‘excellent’ metaheuristic algorithm, therefore, is one that is 

able to achieve the best trade off between exploration and exploitation. When an 

algorithm embarks on too concentrated exploitation, it may likely be trapped in a local 

minima and so makes it impossible to trace the global optima. Conversely, embarking 

on too much exploration with very little exploitation will result in the system finding it 

hard to converge. Similarly, too detailed exploration and exploitation will lead to so 

much delay at a great cost of users’ time and computer resources. In the same vein, too 

little exploration and exploitation will result in the degradation of the algorithm’s 

efficiency and effectiveness.  

Another key feature of a good algorithm is the ability to identify the best 

solution in a particular iteration and possibly the best design vector associated with such 



African buffalo optimization 

31 

 

best solution. This is genarally called ‘The survival of the fittest’ criterion. One way of 

achieving this is to keep updating the current best found so far (Yang, 2011).  
 

 

 

 

 

 

 

 

 

 

 

Figure 1. Format of population-based algorithms 

 

Randomization in metaheuristics 

 

Given that that the three main concerns of metaheuristic algorithms are exploration, 

explotation and identifying the best performer, the mechanism employed by each 

algorithm to achieve these marks out an algorithm from the others. In general, 

algorithms achieve these noble goals through randomization in combination with a 

deterministic procedure. A common mechanism to achieve randomization is to 

determine the upper and lower boundaries in a uniformly distributed variable between 0 

and 1. Algorithms such as Particle Swarm Optimization and Firefly Algorithm employ 

this method. Other algorithms use the Levy flight. Still some algorithms employ the use 

of crossover and mutation to achieve the exploration effects. Mutation ensures that new 

solutions are different from the initial populations (parents) while crossover places a 

limit on  over-exploration(Rani, Jain, Srivastava, & Perumal, 2012). These kinds of 

algorithms, like the Genetic Algorithm (GA), achieve intensification by generating new 

solutions around a priomising or a superior solution. This could be achieved by 

employing a random walk as the move in Simulatted Annealing (SA) (Kirkpatrick, 

Gelatt, & Vecchi, 1983) and pitch adjustment in Harmony Search (HS) algorithm 

(Mahdavi, Fesanghary, & Damangir, 2007): 

Aside handling the issue of intensification and diversification, another important 

characteristic of a good optimization algorithm is identifying and preseving the decision 

vectors (individuals) with good solutions while at the same time discarding bad 

performers. This elitism is helpful, especially in mutimodal and multi-objective 

problems. Elitism in GA and Pg in Particle Swarm Optimization are good examples. 

Discarding of worse solutions is achieved by some form of randomization and 

probabilistic selection criteria such as mutation in Genetic Algorithms and casting away 

of an unproductive nest in. Cuckoo Search algorithm (Gandomi, Yang, & Alavi, 2013).  

 

Classification and taxonomy of metaheuristic algorithms 

 

Metaheuristic algorithms have been classified in several ways in literature. One of such 

ways is to classify them as either population-based or trajectory-based. Population-

based optimization techniques solves problems using a number of decision vectors at a 

time. An example of this is the GA which uses a set of strings. So also is Particle 

Swarm that uses a number of agents or particles (Kennedy, 2010). On the other hand, 

 

1: Initialise population 

2: Evaluate the objective function 

3: repeat 

4: Evaluate the population quality 

5: Apply the variation operator 

6: Evaluate the objective function 

7: until termination condition 
 



Julius Beneoluchi Odili et.al /International Journal of Software Engineering & Computer Systems 2(2016) 28-50 

32 

 

Simulated Annealing and Hill Climbing are trajectory-based and use a single agent that 

moves through the search space in a piecewise fashion (Kennedy, 2010; Mirjalili et al., 

2014). 

Another way to classify metaheuristic optimization algorithms is to identify 

them as either Evolutionary or deterministic. (Venter, 2010). A popular general-purpose 

deterministic algorithm is the DIRECT algorithm which makes use of Lipschitzian 

technique to identify promising subregions in the search space. (Olafsson, 2006). For 

the purpose of this paper, however, our interest is the Population-based optimization 

techniques. At this juncture, let us attempt to a taxonomy of the Nature-inspired 

algorithms. This attempt is by no means exhaustive but will give a clearer picture of 

these optimization techniques (Figure 2).  

  

Algorithms

Deteministic

Stochastic

Direct

Traditional

NR

SIPLEX

FINT-DIFF

Non-Gradient

Gradient-

Based

CWN

Nature-

Inspired

Molecular-Computing

Quantum-Computing

Bio-Inspired

Environment-based

Physics/

Chemistry Based

Ecology

Swarm-Based

Evolutionary

Biogeography BBO

Weed Colony AWC

Symbiosis PS2O

Natural River System IWD

Human Immune SYstem AIS

Sociables

ACO

PSO

ABC

FA

BFA

BCO

ABO

GA

ES

GP

CLS

PFA

ACS

SEO

LCA

DSA

ICA

GE

GS

BH

SO

SA

HS

HJ

NM

 

Figure 2. Taxonomy of Algorithms 

 

 

CWN=Computing with Nature 

FINT. DIFF =Finite Difference            HJ= Hooke-Jeeves pattern 

GA= Genetic Algorithm     NM= Nelder-Mead simplex 

N.R = Newton-Raphson method     ES= Evolution Strategies 

CLS= Classifier Systems   BBO= Biogeography-Based Optimization 

GP= Genetic Programming    FA= Firefly Algorithm 

LCA= League Championship Algorithm  PFA= Paddy Field Algorithm 

DSA= Differential Search Algorithm  BCO= Bee Colony Optimization 

ICA= Imperialist Competitive Algorithm  AWC= Artificial Weed Colony 

GE= Grammatical Evolution     BFA=Bacteria Foraging Algorithm 



African buffalo optimization 

33 

 

GS= Gravitational Search    IWD= Intelligent Water Drop 

BH= Black Hole     AIS= Artificial Immune System 

SO= Spiral Optimization    ACO= Ant Colony Optimization 

SA= Simulatted Annealing    PSO= Particle Swarm Optimization 

HS= Harmony Search     ABC= Artificial Bee Colony 

ABO= African Buffalo Optimization 

 

Swarm-based techniques 

 

Swarm Intelligence is based on collective social interactions of organisms and involves 

the implementation of collective intelligence of groups of simple agents such as ants, 

animals, plants and other elements in our ecosystem based on their behavior in real-life 

situations. Since the African Buffalo Optimization belongs to the Swarm Intelligence 

group of algorithms, it is pertinent to do a critical review of some major algorithms in 

this sub-category of nature-inspired algorithms. 

 

Particle swarm optimization  

 

Particle swarm optimization (PSO), inspired by the flocking of birds and schooling of 

fishes in search for food, was  proposed by Kennedy and Eberhart as a population-

based, stochastic, global optimization technique with the aim of being simple, easy to 

implement yet efficient search technique. Till date, it has proven to be a very successful 

algorithm enjoying wide applicability in several problem domains. The PSO harnesses 

the velocity and positions of these simple ants in its search for solutions. Each agent 

called particles in PSO represents a solution to the problem being solved using five 

major parameters, namely, the current position, the particles’ best position, the best 

position found by its neighbor, the individual particle’s knowledge of the its best 

position achieved so far as well as the its current velocity. Using a simple rule, a particle 

updates its velocity and position with each iteration as the algorithm progresses until it 

reaches termination condition. Moreover, an information repository is maintained that 

documents the best achieved objective function values for each particle involved in the 

search process 

PSO models the behavior of, for example, a swarm of birds searching for a food 

source. The entire particles converge on the best solution through the use of the 

information gathered by each particle, the neighboring particle as well as that obtained 

from the entire flock. The algorithm starts by initializing the particles in the search 

space, followed by updating the position and velocity of each particle in each iteration. 

The updating rule is  

             (1) 

 

        (2)  

              

where i represents the ith particle in the swarm; u represents the uth iteration and Vi
u is 

the velocity of ith particle in uth iteration; ∆t is a unit of time. At the beginning, each 

particle is given random position and velocity that gets updated with each construction 

step. 

In Eq. (10), Vi
u  represents the particle’s velocity; C1, and C2 represent the 

cognitive and social factors; r1   and  r2 represents the random numbers; Pi
k is the 



Julius Beneoluchi Odili et.al /International Journal of Software Engineering & Computer Systems 2(2016) 28-50 

34 

 

individual particle’s best position; Pg
k is the best particle in the herd; and Xi

k  is the 

position of particle i. Basically, the action steps in PSO algorithm are as in Figure 3.   

 

 

Figure 3. PSO pseudocode 

 

Comment: A critical examination of the PSO algorithm reveals that classical PSO 

algorithm is easy to implement and there are relatively fewer parameters to adjust than 

in some algorithms like the ACO. It is important to make this assessment based on the 

classical PSO because there have been several modifications of the initial PSO of late 

with the introduction of more parameters in a bid to achieve better results (Clerc & 

Kennedy, 2002). 

Moreover, PSO has a more efficient memory capability than algorithms like the 

GA. Also, PSO achieves better diversity in exploring the search space since all the 

particles use the information obtained by the best particles in each iteration to improve 

their locations and speed. This search scheme is diametrically opposed to GA, for 

instance, where the worse solutions are discarded and the population only revolves 

around the fittest individuals.  

PSO shares some similarities with algorithms like the GP, ES and GA through 

the intialization of solutions and the update of generations. Though the PSO does not 

use evolution operators like mutation, crossover, inversion and selection, particles aim 

at the optimum by following the global best particle. On the whole, PSO has been 

proven to be effective in searching continuous functions and in multimodal seach 

environments (Bonabeau, Dorigo, & Theraulaz, 1999). However, PSO uses several 

parameters and this affects the speed and efficiency of the algorithm. 

 

Ant colony optimization (ACO) 

 

This is one of the most popular metaheuristic algorithms in literature. The Ant Colony 

Optimization algorithm was developed by Marco Dorigo and Di Caro in 1999 after 

some initial work on the Ant System by Marco Dorigo and Ant Colony System by 

Dorigo and Gambardella. The Ant Colony Optimization was inspired by the random 

walk of ants in search of food. Once a food source is located, the ant that discovered the 

food carries a particle of the food and as it returns to the nest, usually follows a shorter 

route and continually deposits some amount of pheromones as a way of informing other 

ants of its breakthrough. The neighboring ants, perceiving the scent of the pheromone 

will likely join the successful ant to track the food source. Once these ants get to the 

food source, they, in turn, carry some fragments of the food and on their way back to 

the nest, drop pheromones as they further optimize the route of the initial ant. This 

1. Initialize the swarm by assigning random position and velocity to each particle.  

2. Evaluate the fitness function for each particle.  

3. For each particle, compare the particle‘s fitness value with its personal best so far. If the present fitness 

value (obtained from step 2 above) is better than the personal best value obtained from previous iterations, 

then set this present best fitness value as particle’s best and the current particle‘s position, xi, as the best 

position so far. Also identy Pi’s best performing neighbor 

4. Identify the particle in the entire swarm that has the best fitness value so far as set it as the group best 

fitness.  

5. Update the velocities and positions of all the particles using (2) and (3).  

6. Repeat steps 2–5 until you reach the stopping criteria.  

 



African buffalo optimization 

35 

 

process increases the pheromone concentration on the favourite ‘shortest’ route and in 

that process attract other ants. Within a short while, the colony of ants are on the 

optimized route moving to and from the food source. On the other hand, when an ant 

arrives at the food and could not find food,  may be, because that food is exhausted or 

the particular ant missed the direction of the food source, on its way back it drops no 

pheromone and so with time that route loses its attraction due to pheromone 

evaporation. This situation leads the ants to explore other areas.  

The ACO algorithm is designed by a process of simulating the ant foraging 

behavior, brood sorting, nest building and self-assembling. The ACO  has three main 

functions, namely,  ConstructAntSolutions, Pheromone Update and DeamonActions. 

  

(i)ConstructAntSolutions: This function performs the construction of the the solution. 

Here the artificial ants move through adjacent states of a problem according to a 

transition rule and, in this way, gradually build a solution iteratively. 

 

(ii)Pheromone Update: This function updates  pheromone trails either through 

pheromone reinforcement or evaporation. The is done in two ways depending on the 

variant of the ACO one is working with. The pheromone update function could be done 

at the end of each iteration or when the ants individually completes a solution.  

 

(iii)DeamonActions: This function is rather optional depending on the problem being 

solved.  It involves increasing the pheromone levels to select promising edges 

(Kumbharana & Pandey, 2013). See Figure 4.  

 

Step 1: Initialise pheromone values τ for all the edges in the graph. For a start, all the edges 

should have equal amount of pheromone unless there exist some heuristic information 

favouring some edges that may lead to speedier convergence. 

Step 2: Construct a solution for each ant x. X= (1,2,...,N) . 

Step 3: Update the pheromone values for each edge depending on the quality of solution. 

Step 4 Go to Step 2 until stopping criterium is reached. 

 

Figure 4. ACO pseudocode 

 

Comment: The ACO has proven to be a robust algorithm that can be easily hydridized 

with other algorithms to enhance efficiency. Moreover, it is efficient in search situations 

where the graph is prone to dynamic changes. Also ACO performs well in distributed 

computing environments. However, it has the weakness of easily falling into premature 

convergence because its pheromone update is according to the present best path. Again, 

it uses several parameters that require proper tuning. Such parameters as pheromone 

quantity, pheromone update rule, evarporation rate, pheromone reinforcement rate etc 

[28, 27]. 

 

Artificial Bee Colony (ABC)  

 

This is inspired by the behavior of natural honey bee swarm and was proposed by 

Karaboga and Basturk in 2009 (Karaboga & Akay, 2009). This algorithm categorizes 

bees into three: scout bees, onlooker bees and employed bees. A scout bee is one that 

flies around the search place seeking solutions (food source); an onlooker bee is one that 

is in the nest waiting for the report of the scout bee and an employed bee is one that 



Julius Beneoluchi Odili et.al /International Journal of Software Engineering & Computer Systems 2(2016) 28-50 

36 

 

after watching the waggle dance of the scout bee opts to join in harvesting the food 

source.  A scout bee transform to an employed bee once it (the same scout bee) is 

involved in harvesting the food source. In this algorithm, the food source represents a 

solution to the optimization problem. The volume of nectar in a food source represents 

the quality (fitness) of the solution. 

When the employed bee brings some nectar to the hive, it has three options: 

return to get more nectar, accompany other dancing bee to a new site or simply stay 

back at the hive. The bee’s decision is informed by a number of factors ranging from the 

distance of the food source to the hive, the quality and quantity of the available nectar at 

the food source and the number of employed bees harvesting the nectar at that food 

source. The global search mechanism of the ABC depends of the random search 

capacity of the scout bees while the exploitation capacity of the algorithm is based on 

the activities of the employed and onlooker bees. This bee behavior can be replicated in 

some real life problems, such as in transportation and business applications (Pham et al., 

2011). For the pseudo-code of ABC, please refer to Figure 5.  

 

(1) Initialize population with random solutions. 

(2) Evaluate fitness of the individual bees in the population. 

(3) While (stopping criterion is not reached), form new population. 

(4) Choose site(s) for the next neighborhood search. 

(5) Select bees for selected locations to be searched ensuring that more bees are allocated 

to the best locations & evaluate fitness. 

(6) Choose the fittest bee from each patch for the next best harvesting site(s). 

(7) Assign remaining bees to search randomly and evaluate their fitness. 

(8) End While. 

 

Figure 5. ABC pseudo-code 

 

Comment:  Previous studies on the ABC has shown that it is very effective in feed-

forward artificial neural networks training in addition to the algorithm being very 

efficient in multidimensional search environments due to its capacity to get out of a 

local minimum with ease. However, studies on the Artificial Bee Colony are still not 

widespread [31-33] and there are several parameters to appropriately tune in order to get 

good results. 

 

Bee Colony Optimization 

 

In this algorithm, a population of artificial bees conducts a search for the optimal 

solution(s). Each bee generates one solution to the problem. The Bee Colony 

Optimization algorithm makes use of two alternating phases, namely, forward pass 

phase and backward pass phase. In the forward pass phase, the bees explore the search 

space through a number of moves that construct or improve a solution and thereby 

creating a new solution. After arriving at this partial solution, the bees return to the nest 

to initiate the backward pass phase where they communicate information about their 

newly-found solutions. They communicate the distance as well as the quality of the 

food source (solution) to the nest through a waggle dance.  Based on the information 

collected at this phase, the bees (including the dancer) decide, with a certain probability, 

to abandon the newly-found solution and remain in the nest or to follow the dancing bee 

to the food source. This leads to the second forward pass where the bees improve on the 



African buffalo optimization 

37 

 

previously found solutions and after which they return to another backward pass phase. 

These phases are performed repeatedly until a stopping criterion is reached. The 

stopping criterion could be the maximum number of forward/backward pass phases, the 

maximum number of forward/backward phases without tangible improvement of the 

objective function or the arrival at the optimal solution. Basically, the pseudo-code of 

the Bee Colony Optimization algorithm is as in Figure 6. 
 

1. Initialization: set every bee to an empty solution; (some previous knowledge of the 

problem is helpful here) 

2. For each bee, perform the forward pass:  

a) Set ; k is a counter for constructive moves in the forward pass;  

b) Evaluate all possible constructive moves;  

c) According to the results from the evaluation, select one move using the roulette 

wheel;  

d)   If , return to step 2b.  

3. Let the bees start the backward pass phase;  

4. Based on the objective function value of each bee, sort the bees;  

5. Let each bee decide, randomly, whether to continue its own exploration and become 

a recruiter, or to become a follower of bees with higher objective function value;  

6. For every follower bee, choose a new solution from recruiter bees using a the 

roulette wheel;  

7. If the stopping criterion is not reached, return to step 2;  

8. Output the best result.  

 

Figure 6. BCO pseudo-code 

 

Comment: The mechanism that informs the decision of a bee to follow a particular 

dancer is not well established but it is rather vaguely considered that the decision to 

follow a particular bee is a function of the food source [34].  However, the abandonment 

phenomenon is of great benefit to the algorithm. That is to say that when the employed 

bees could not find the optimized solutions after some repetitions, they transform to the 

scout bees again and move in random paths to start searching for optimized solutions.  

This way, the solutions which are not optimized are abandoned and further search are 

made for the global optimized points. This procedure helps the algorithm not to fall into 

a local optima or minima in a multi-dimensional search environment. As a result, it 

could be safe to say that the artificial bees use a combination of of local and global 

searching methods to arrive at solutions. 

It should, however, be observed that that the BCO has complicated fitness 

function. As such, obtaining good results is a fuction of proper setting of parameters 

such as minimum overshoot, rise time, steady state error and settling time in the state 

response.  Moreover,  it has been observed that Bee algorithm is not as adaptive as 

ACO. Finally, BCO algorithm shows poor performance and remains inefficient in 

exploring search space because its search equation is significantly influenced by a 

random quantity which helps in exploration at the cost of exploitation of the search 

space [35]. 

 

 

 

 



Julius Beneoluchi Odili et.al /International Journal of Software Engineering & Computer Systems 2(2016) 28-50 

38 

 

AFRICAN BUFFALO OPTIMIZATION (ABO) ALGORITHM 

 

At this juncture, one may be tempted to ask: ‘Since we have several algorithms already, 

why then do we need to add more?’ A critical review of the algorithms discussed so far, 

in this study, reveals that the algorithms exhibit exceptional strength in solving different 

problems. However, they are plagued by several inadequacies ranging from premature 

convergence, the use of several parameters and inefficient exploration of the search 

space, complicated fitness function to delay in obtaining optimal or near-optimal 

solutions [32]. The African Buffalo Optimization is, therefore, an attempt to 

complement the existing algorithms with the aim of solving some of the perceived 

weaknesses of the earlier algorithms, especially the problems of delay and inefficiency.  

 

African buffalos 

 

The Africa Buffalo is Africa's only wild cow and is of the same species with the 

domestic cattle. They are referred to as Buffalo, African Buffalo,  Cape buffalo, Forest 

buffalo, and Savannah buffalo. They are usually very strong, imposing, and fierce-

looking. Most times, their colour is usually blackish-grey or dark-brown. Moreover, 

both males and female have upturned horns, meeting at a central protective shield on 

their forehead, called boss. These African Buffalos live in herds of up to 1,000 

individuals. These large animals are unique in their ability to defend themselves and to 

help one another in times of danger, especially when under attack by a pride of lions.  

They are about the only known animal that dare to confront a lion in defence of one of 

their own in danger. This do by responding to the distress/alert call from a buffalo in 

danger or other other buffalos oberving the incidence. In response to the distress waaa 

calls, the herd will group together to defend another of their kind that is under attack 

from a predator.  

            Their famed cooperative abilities is further highlighted by their voting behaviour 

in decision making. It is believed that the buffalos consult widely among themselves in 

taking decisions about the choice of of grazing fields. In a study, it was discovered that 

their movements are controlled by the majority decisions. This they do by standing up 

and gazing at a particular direction in turns. When the average direction of gaze is 

compared with the subsequent movement of the herd, the average deviation is only three 

degrees, which is well within measurement error. On days in which cows differ sharply 

in their direction of gaze, the herd tends to split and graze in separate patches for the 

night (Stueckle & Zinner, 2008).  

            In addition to this evidence for communal decision making, there is no evidence 

for individual leadership. For example, no individual cow or bull stays in the vanguard 

of the herd for more than a few minutes. Prins (Prins, 1996) regards communal decision 

making in buffalo herds as similar to the famous bee dance, in which individuals also 

communicate the direction of beneficial resources to each other (Wilson, 1997). 

 

Communication among African buffalos 

 

African buffalos use two main sounds to organise themselves in their constant migrant 

lifestyle in search of grazing lands. They emit low-pitched, two- to four-second calls 

intermittently at three- to six-second intervals to signal the herd to move. To signal to 

the herd to change direction, buffaloss will emit “cracky” waaa sounds. When moving 

to drinking places, some individuals make long ‘maaa’ calls to summon the herd. When 



African buffalo optimization 

39 

 

being aggressive, they make explosive grunts that may last for a couple of seconds or 

turn into rumbling growl. Cows produce croaking calls when looking for their calves. 

Calves will make a similar call of a higher pitch when in distress. When threatened by 

predators, they make a long drawn-out ‘waaa’ calls. Dominant individuals, especially 

males, make long intimidating ‘maaa’ calls to announce their presence and location. A 

more intense version of the same call is emitted as a warning to ward off an encroaching 

inferior.  

 

African buffalo optimization 

 

African Buffalo Optimization (A.B.O) is a simulation of the alert (‘maaa’) and alarm 

(‘waaa’) calls of African buffalos in their foraging assignments. The waaa calls is used 

to warn the buffalos of the presence of predators, ward off an approaching inferior, 

assert dominance or  express the lack of pastures in a particular area and therefore urge 

the herd to move on to safer or more rewarding areas (exploration). Whenever this call 

is made, the animals are asked to be alert and to seek a safer or better grazing field. The 

maaa calls is used to encourage the buffalos to be relaxed as there are good grazing 

fields around, reassure an inferior and to express satisfaction about the amount of 

pastures cum favourable grazing atmosphere at a particular location (exploitation). With 

these sounds, the buffalos are able to optimize their search for food source. The ABO is 

a population-based algorithm in which individual buffalos work together to solve a 

given problem. Using the waaa (move on) signal or the maaa (hang around) signal, the 

animals are able to obtain amazing solutions in their exploration and exploitation of the 

search space.   

This study is an attempt to develop a robust, fast, efficient, effective, yet simple-

to-implement algorithm that has enormous capacity to explore and exploit the search 

space by simulating the communicative and coopertaive characteristics of the African 

buffalos in their search for solutions. It solves the problem of premature convergence by 

regularly monitoring and updating the location of the best buffalo in the herd. In a 

situation where the best buffalo is not updating in a given number of iteration, the entire 

herd is re-initialized. This helps to ensure adequate exploration. The problem of slow 

speed is handled with the African Buffalo Optimization’s use of very few parameters, 

primarily the learning parameters (lp1 and lp2). The issue of adequate exploration and 

exploitation of the solution space is further enhanced with the democratic equation 

(Eq.3) where the animals regularly communicate with one another. 

 

The ABO algorithm 

 

In Figure 7, the w.k represents the waaa (move on / explore) signals of the buffalos with 

particular reference to buffalo k; m.k is the maaa (stay to exploit); w.k +1 is the request 

for further exploration; m.k+1 represents a call for further exploitation; lp1 and lpr2 are 

the learning parameters.  

 

 

 

 

 

 

 



Julius Beneoluchi Odili et.al /International Journal of Software Engineering & Computer Systems 2(2016) 28-50 

40 

 

 
 

Step1. Objective function τ 

Step2. Initialization: randomly place buffalos  to nodes at the solution space;  

Step3. Update the buffalos fitness values  using Equation  (11) 

                            (11) 

where m.k and w.k represents the exploration and exploitation moves respectively of the kth  buffalo 

(k=1,2,………..N) ;  lpr1 and lpr2  are learning factors usually [0,1];   

bgmax  is the herd’s best fitness and bpmax , the individual buffalo’s best  

Step4. Update the  location of buffalo k (bpmax and bgmax) using (12): 

                                                           (12)  

Step5. Is bgmax updating? Yes, go to 6. If No, go to 2  

Step6. If the stopping criteria is not met, go back to algorithm step 3,else go to 7 

Step7. Output best solution. 

 

Figure 7. ABO algorithm 
Mathematical model 

 

African Buffalo Optimization algorithm, basically, models the three principal 

aforementioned characteristics of the African Buffalo, namely, excellent memory, 

regular communication and exceptional intelligence. The waaa calls of buffalo k (k=1, 

2, 3…n) which propels the buffalos to move on to explore other grazing areas since 

where they are presently is unsafe or lacks sufficient pasture is represented by w.k and 

the maaa sound which asks the animals to stay on to exploit the present location because 

it has enough pasture and is safe is represented by m.k .  Mathematically, the democratic 

equations which determines the movement of the buffalos is: 

 

   (11)  

 

The democratic Equation (3) has three main parts, namely, the memory part ( ) 

which is an indication that the animals are aware that they have relocated from their 

former positions ( ) to a new one. This is an indication of their extensive memory 

capacity which is a vital tool in their migrant lifestyle. The second part represents the 

cooperative attributes of the animals . The buffalos are excellent 

communicators and are able to track the location of the best buffalo in each iteration. 

The last part of this equation ( ) brings out the exceptional 

intelligence of these animals. They are able to tell their previous best productive 

location in comparison to their present position. This enables them take informed 

decisions in their search for solutions. Eq. 12, basically, propels the buffalos to a new 

location following the outcome of Eq. 11. 

 



African buffalo optimization 

41 

 

Start

End

Bgmax updating

Initialise the buffalos

Validate stopping criteria

Update fitness

Output best solution

Yes

Yes

No

No

 
 

                  Figure 8. ABO flowchart 

 

The working of the ABO 

 

The algorithm begins by initializing the population of buffalos. It does this by assigning 

a random location to each buffalo within the search space.  Next, it updates each 

buffalo’s fitness in relation to the target goal and in this way ascertain the herd’s best 

animal (bgmax) and each buffalos personal best (bpmax.k  ). In each step, each animal 

keeps a memory of its coordinates. If the present fitness is better than the individual’s 

maximum fitness (bpmax), 

the algorithm saves the location vector for the particular buffalo. If the fitness is better 

than the herd’s overall maximum, it saves it as the herd’s maximum (bgmax). Next, the 

algorithm updates the location of the buffalos using Eq.4. After this, it confirms the 

improvement or otherwise of the leading buffalo(bgmax). 

If there is no improvement in a number of iteration, the algorithm re-initializes 

the entire herd. If the best buffalo is improving its  positions, the algorithm checks to 

see if the stopping criteria is reached. If our best buffalo fitness (bgmax) meets our exit 

criteria, it ends the run and provides the location vector as the solution to the given 

problem. Some of the high points of this new algorithm are its ease of implementation, 

ability to search both locally and globally at the same time, use of relatively few 

parameters, flexibility and fast rate of convergence. The Algorithm flowchart is 

presented in Figure 8.  

 

 



Julius Beneoluchi Odili et.al /International Journal of Software Engineering & Computer Systems 2(2016) 28-50 

42 

 

NUMERICAL TESTS 

 

 Numerical investigations are very necessary in testing the capacity of novel algorithms 

to arrive at solutions. The new algorithms should be investigated for speed, convergence 

and robustness (Baritompa & Hendrix, 2005). In this section, the test for speed is done 

by Average number of Function Evaluations (‘AFE’) taken to arrive at the optimal 

solution; convergence by the relative error between the optimal solution obtained by the 

algorithm (‘Best’) and the Optimal result of the function (‘Opt’) and robustness by 

testing different search spaces ranging from Unimodal non-separable, Multi-modal non-

separable to Multi-modal separable. A comparative lower relative error, therefore, is 

indicative of a better algorithm. To do this, six benchmark global optimization functions 

were selected due to their diversities and difficulties they pose to search algorithms. 

Two functions are selected in each category: from unimodal and separable, we chose 

Brown 1 and Brown2; from multi-modal and non-separable functions, we chose 

Hartman3 and Branin functions and from multimodal and separable, we chose F1 and 

F3 functions (Ali, Khompatraporn, & Zabinsky, 2005).  

The experimental results obtained were compared with those from Improved 

Genetic Algorithm (IGA) and the Staged Continuous Tabu Search (SCTS) algorithm 

(Zheng, Ngo, Shum, Tjin, & Binh, 2005). These algorithms chosen to compare with the 

ABO in this study have posted some of the best results in literature. The detailed 

comparison is shown in Table 1.  

 

Table 1. Global optimization search results 

Func= Function name; Opt= optimal result of the benchmark function under 

investigation;  Xter=Characteristics; Var=number of variables required by each 

function;  Best= Algorithm’s best result; Suc%= Percentage of Successful runs; AFE= 

average number of Function Evaluation; 

 

 

 

In Table 1, The Relative Error is obtained by: 

           (13)  

In a situation where the optimal result of a function is 0, the formula for obtaining is: 

                  (14)  

Func Opt Xter Var 
                     

ABO     

                     

IGA     

                   

SCTS     

                

    

Best Rel AFE Suc Best Rel. AFE Suc Best Rel AFE Suc 

          Err%   %   Err %   %   Err%    % 

Brown1 2 UN 20 2.273 13.6 8039 87 8.552 327.6 128644 0 2.008 0.05 111430 100 

Brown3 0 UN 20 0.001 0.1 4000 99 0.674 67.4 106859 5 0.006 0.009 15142 100 

Hartm3 -3.863 MN 3 -3.863 0 91 100 -3.861 0.05 1680 100 -3.86 0.018 560 100 

Branin 0.3978 MN 2 0.398 0 153 100 0.398 0.25 2040 100 0.398 0.025 492 100 

F1 -1.232 MS 1 -1.232 0 44 100 -1.232 0 784 100 -1.23 0.03 134 100 

F3 -12.03 MS 1 -12.03 0 5347 100 -12.03 0 744 100 -12 0.001 181 100 



African buffalo optimization 

43 

 

Table 1 shows the capacity of ABO to obtain competitive results in searching diverse 

search spaces. The novel algorithm obtained optimal results in four of the six test 

functions; with IGA obtaining the optimal solution in two out of the six test cases and 

SCTS obtaining none. ABO’s capacity to escape local minima is traceable to her 

frequent updating of the fitness of each buffalo in relation to the best buffalo in the herd.  

Another strength of the ABO as can be observed here is its speed in obtaining solutions. 

This is evaluated using the average number of function eveluations (AFE). In all the test 

instances, the ABO is faster in five of the six functions than the other algorithms. The 

cummulative AFE of the ABO is 17,674 to IGA’s 240,771 and SCTS’s 127,939. This 

shows that ABO is 1362% faster than than the IGA and 724% faster than the SCTS (See 

Figure 9).  

 

 
 

Figure 9. Global optimization line graph 

 

APPLICATION OF THE ABO TO SOLVE THE SYMMETRIC TSP 

 

In applying ABO to solve the TSP, the basic solution steps are: 

(a.) choose, according to some criterion, a start city at which the buffalos are positioned;  

(b.) use the democratic Eq. 3 and heuristic values to probabilistically construct a buffalo 

tour by adding cities that the animals are yet to visit. 

(c.) calculate buffalo fitness using Eq. 11 & move the animals to the next node with Eq. 

12.  

(d) repeat steps b and c until the buffalos complete the tour 

(d.) go back to the initial city.  

 (e.) after all buffalos have completed their tour, determine the best route using Eq. 5 

        (15) 

              

In Eq. 5, lp1 and lp2 are learning paramters  >0, m is the  ‘maaa’ call asking the animals 

to hang around to exploit edge ab,  w is the ‘waaa’ call asking the buffalos to explore 

edge ab. For buffalo k, the probability of buffalo k  moving from city ‘a’ to city ‘b’ 

depends on the combination of two values, viz., the desirability of the move, as 

computed by some heuristic indicating the prior attractiveness of that move and the 

summative benefit of the move to the entire herd, indicating how proficient it has been 

in the past to making that particular move. The denominator values represent the post 



Julius Beneoluchi Odili et.al /International Journal of Software Engineering & Computer Systems 2(2016) 28-50 

44 

 

indication of the desirability of that move. The paths are improved usually when all 

buffalos have completed their solution. The algorithm parameters are set as 

population=40, lpr1 = 0.6, lpr2 as 0.5.  

 

Experimental work on TSP 

 

In our next set of experiments, we examined the performance of ABO on some 

unpopular TSP benchmark datasets. We compared our output with the results obtained 

by using Honey Bee Mating Optimization (HBMO). We chose to compare our work 

with the HBMO because this (HBMO) study presently holds the best TSP result in 

literature (Marinakis, Marinaki, & Dounias, 2011). The result is presented in Table 2.  

 

 

Table 2: Comparative results of ABO and HBMO 

 

TSP 

 

         ABO 

  

     HBMO 

  
CASES               

 

 OPT Best Rel.   CPU        Best       Rel.      CPU 

      

    Error          

(%) 

  Time          

(s)   

     Error 

(%) Time (s) 

        
A280 2579 2579 0 0.07 2579 0 8.5 

Fl417 11861 11862 0.01 0.03 11861 0 24.67 

Pr439 107217 107340 0.11 0.03 107217 0 36.21 

Pcb442 50778 50799 0.04 0.06 50778 0 37.12 

D493 35002 35024 0.06 0.07 35002 0 45.21 

Dsj1000 18660188 18680771 0.11 0.04 18660556 0 80.29 

Pr1002 259045 259132 0.03 0.04 259045 0 80.57 

U1060 224094 224481 0.17 0.05 224094 0 80.68 

Vm1084 232929 232931 0 0.08 232929 0 85.21 

Pcb1173 56892 56918 0.05 0.08 56892 0 89.23 

D1291 50801 50839 0.07 0.05 50801 0 91.14 

Nrw1379 56638 56653 0.03 0.05 56638 0 121.89 

Fl1577 22249 22249 0 0.06 22249 0 222.27 

Vm1748 336556 336642 0.03 0.07 336712 0.02 257.81 

U1817 57201 57201 0 0.07 57201 0 289.12 

D2103 80450 80456 0.01 0.08 80450 0 350.78 

U2152 64253 64258 0.01 0.12 64267 0.02 357.23 

Pcb3038 137694 137700 0 0.14 137694 0 457.29 

Fl3795 28772 28772 0 0.21 28783 0.04 461.81 

Rl 5915 565530 565800 0.05 0.49 565530 0 557.87 

Rl5934 556045 556078 0.01 0.52 556080 0.01 561.21 

Pla7379 23260728 23268269 0.03 0.7 23261400 0 780.31 

Usa13509 19982859 19993952 0.06 23.54 19982849 0 897.09 

Fn14461 182566 182745 0.1 0.28 182612 0.03 498.01 

TOTAL       26.93     6471.52 



African buffalo optimization 

45 

 

 

In Table 2, both ABO and HBMO were able to obtain above 99.98% accuracy in all the 

24 benchmark TSP instances ranging from 280 to 14,461 nodes/cities which were under 

investigation. These are commanding performances.  

              In comparing the computational costs of obtaining results, there is such a gulf 

in the time taken (and by implication, computer resources) to obtain results: while it 

took ABO 26.93 seconds to solve all the 24 problems, it took HBMO a whopping 

6,471.52 seconds.  This shows ABO is more than 240 times faster than the HBMO and 

since speed is a measure of good algorithm, ABO is a better algorithm. This fact 

becomes clearer when one observes that in spite of ABO’s speed, the novel algorithm 

was able to obtain over 99.98% accuracy in all the test cases. The speed of the ABO is 

traceable to its use of relatively fewer parameters to most other popular algorithms in its 

search for solutions. The ABO’s controlling parameters are the learning factors (lp1 and 

lp2). These parameters coupled with the intelligence and communication abilities of the 

buffalos are effective tools of the algorithm in achieving good results. 

 

ABO ON THE ASYMMETRIC TRAVELLING SALESMAN’S PROBLEM 

 

It is pertinent, at this juncture, to test the performance of the African Buffalo 

Optimization (ABO) on the Asymmetric Travelling Salesman’s Problems. To do this,  

we carried out experiments on 15 out of the 19 benchmark optimization problems 

available on TSPLIB95 (Reinelt, 1991). The choice of the datasets is informed by their 

complexity and popularity in literature. The results obtained from this exercise was 

compared with those obtained from three other heuristic algorithms available in Tsp-

solve (Hurwitz & Craig) . The comparative algorithms are Addition heuristics, Assign 

heuristics, Loss and Patching heuristics (Rocha, Fernandes, & Soares, 2004). The 

Addition Heuristics employs the construction method in its search and tour 

development; the Loss  Heuristics uses a technique described in (Van der Cruyssen & 

Rijckaert, 1978) and the Patching Heuristics engages in solving an assignment problem 

and later integrates the subtours into one tour using the patching technique (Karp & 

Steele, 1985) 

This comparison is relevant because there are three basic methods of solving 

asymmetric Travelling Salesman’s  Problem in literature and these are the Constructive 

method, the Improvement method and the Composite method that uses a combination of 

the first  two (Helsgaun, 2000). The ABO solves the asymmetric Travelling Salesman’s 

Problem using the composite method. It starts by using the constructive method, 

especially for problems involving less than 100 nodes but turns to improve upon the 

construction as the number of nodes increases. This, coupled with the ABO’s use of 

very few parameters enables the ABO to arrive at solutions faster than many other 

methods. Basically, tour construction method builds a tour by simply adding a new node 

that has not been added or visited at each step/iteration. When the tour has been 

constructed, the buffalos return to the starting node, avoiding any already visited node 

as much as possible. An example of a method that uses strict Construction technique is 

the nearest neighborhood algorithm (Suchal & Návrat, 2010) . Meanwhile, the tour 

improvement method gets a tour improved through making improvements/exchanges on 

the already existing tours. Examples are the 2-opt algorithm and the Lin-Kernighan 

algorithm (Helsgaun, 2000). The composite method, on the hand, as in ABO, starts 

solving the problem by constructing a tour through the addition of unvisited nodes and 

then performs improvement exchanges depending on the location of the best buffalo. 



Julius Beneoluchi Odili et.al /International Journal of Software Engineering & Computer Systems 2(2016) 28-50 

46 

 

This helps the algorithm to arrive at better solutions. The result is presented in Table 3 

below.  

As close look at Table 3 shows that the ABO outperforms the other methods in  

obtaining the optimal solutions. The ABO obtained optimal solution in three ATSP 

instances: Ftv38,Ft53 and Ftv64 in addition to obtaining over 99.5% accuracy in the 

remaining instances. Meanwhile the other methods were only able to obtain optimal 

result in one instance each and that is Br17. Their performances in other instances were 

rather not encouraging. For instance, the cummulative relative error percentage of the 

ABO in all ATSP instances is 1.53% to Addition Heuristics 102.52%; Loss Heuristics 

59.43 and Patching Heuristics 67.68%.  From this analysis, it is obvious that ABO 

outperformed other methods. 

 

Table 3. ABO and other Heuristics on ATSP 

 

African buffalo optimization with Lin-Kernighan Algorithm 

 

To conclude our validation process of the African Buffalo Optimization algorithm, it is 

neccessary to compare its performance with that of the famous Lin-Kernighan method 

developed by Helsgaun. It is imperative to compare the ABO with Lin-Kerninghan 

since the latter, aside from being the most pospular of all Lin-Kernighan pproaches, it is  

about the fastest algorithm in solving asymmetric Travelling Salesman’s Problems. This 

comparison deals with the examination of the success rate of both approaches and the 

time taken to arrive at solutions. The success rate is obtained by calculating the 

percentage successful run of the algorithm in question  to get the optimal or near-

optimal result of the particular TSP instance. The result is presented in Table 4 below.  

            The good runs of the ABO continues when compared with Lin-Kernighan 

algorithm (See Table 4). In terms of time used to obtain their results, both algorithms 

performed extremely well with the Lin-Kernighan performing a little better than the 

ABO. It took the ABO a cummulative time of 0.3 second to solve all the problems to 

Lin-Kernighan’s cummulative total of 0.0 second. Moreover, experimental data 

obtained shows that the ABO obtained 100% success in reaching optimal or near-

optimal solutions to all the test cases. The same cannot be said of the Lin-Kernighan 

which obtained a disappointing 21% success in P43, 47% in Ftv35, 53% in Ftv38, 95% 

TSP      Opt 

        

ABO 

  

   Addition  

    Heuristics 

Loss 

Heuristics 

  

  Patching  

  instance                     Heuristics   

 

    

    

Best 

Rel.   

Err%  Iter  Best 

   Rel.                        

Err% Iter         Best 

  Rel.        

Err%   Iter Best 

Rel. 

Err% Iter 

 Br17 39 39.17 0.43 17 39 0 100 39 0 100 39 0 100 

 Ry48p 14422 14440 0.12 186 14939 3.65 200 15254 5.77 100 14857 3.02 100 

 Ftv33 1286 1287 0.08 79 1482 15.24 200 1372 6.69 600 1409 9.56 200 

 Ftv35 1473 1474 0.07 107 1491 1.22 100 1508 2.38 300 1489 1.09 200 

 Ftv38 1530 1530 0 126 1634 6.79 200 1547 1.11 700 1546 0.98 100 

 Ftv44 1613 1614 0.06 58 1733 7.44 3400 1673 3.72 300 1699 5.33 100 

 Ftv47 1776 1777 0.06 6 1793 0.96 700 1787 0.56 1600 1846 14.45 300 

 Ftv55 1608 1610 0.12 117 1781 10.76 3400 1747 8.64 200 1657 3.05 100 

 Ftv64 1839 1839 0 10 2054 11.69 500 1890 2.77 500 1871 1.74 900 

 Ftv70 1950 1955 0.26 46 2168 10.9 400 2074 6.36 100 2004 2.77 600 

 Kro124p 36230 36275 0.12 13 40524 11.85 200 41121 13.5 500 40106 10.70 100 

 Ft53 6905 6905 0 126 8088 17.13 300 7383 6.92 500 7847 13.64 100 

 Ft70 38673 38753 0.21 179 40566 4.89 500 39065 1.01 1900 39197 1.35 100 

    1.53%   102.52%   59.43%   67.68%   



African buffalo optimization 

47 

 

in Kro124p and 99% in Ry48p. This, again, underscores ABO’s superior performance 

when in competition with many popular methods. 

 

Table 4. ABO and Lin-Kernighan algorithm on ATSP 
 

TSP 

 No 

of   

Cities Optimal 

                    

ABO 

  

LIN-

KERNIGHAN 

Instances   Values           

  

  

  

Success 

      

Time 

  

Success 

 

                    

Time 

  

  

   Rate 

% 

     

(secs) 

   Rate 

% 

 

                   

(secs) 

Br17 17 39 100 0 100   0 

Ry48p 48 14422 100 0 99   0 

Ftv33 34 1286 100 0 100   0 

Ftv35 36 1473 100 0 47   0 

Ftv38 39 1530 100 0 53   0 

Ftv44 45 1613 100 0 100   0 

Ftv47 48 1776 100 0 100 

 

0 

Ft53 53 6905 100 0 100   0 

Ftv55 56 1608 100 0 100   0 

Ftv64 65 1839 100 0 100   0 

Ftv70 71 5620 100 0.1 100   0 

Kro124p 100 36230 100 0.1 95   0 

Ft53 53 6905 100 0 100   0 

Ft70 70 38673 100 0 100   0 

P43 43 5620 100 0.1 21   0 

 

CONCLUSION 
 

This paper introduces the African Buffalo Optimization algorithm. It highlights the 

basic flow of the novel algorithm. The ABO algorithm benchmarked on some 

challenging global optimization test functions and over 24 Symmetric and 15 

Asymmetric Travelling Salesman’s Problems was validated by comparing its 

performance with other methods that use similar or different memory matrix and 

information propogation techniques in their search for solutions. The results obtained 

from using the ABO in all the comparative instances are quite competitive. In fact, in 

most cases, the ABO ouperformed the other methods that use different techniques to 

construct their tours. It is worthy of note that the speed of the ABO in arriving at 

solutions is one remarkable contribution of the novel agorithm. It is therefore our 

conclusion that the ABO is a worthy addition to the Swarm Intelligence family of 

optimization algorithms. 

 

In view of the competitive performance of the African Buffalo Optimization (ABO) to 

solving the benchmark test functions and TSP instances in this study, the authors hope 

to apply the ABO to solving other optimization problems like Job Scheduling, 

Knapsack Problem, Vehicle Routing and solving urban transport problems. 

 

 



Julius Beneoluchi Odili et.al /International Journal of Software Engineering & Computer Systems 2(2016) 28-50 

48 

 

 

REFERENCES 
 

Ali, M. M., Khompatraporn, C., & Zabinsky, Z. B. (2005). A numerical evaluation of 

several stochastic algorithms on selected continuous global optimization test 

problems. Journal of global optimization, 31(4), 635-672.  

Arora, J. (2004). Introduction to optimum design: Academic Press. 

Baritompa, B., & Hendrix, E. M. (2005). On the investigation of stochastic global 

optimization algorithms. Journal of global optimization, 31(4), 567-578.  

Ben-Israel, A. (1966). A Newton-Raphson method for the solution of systems of 

equations. Journal of Mathematical analysis and applications, 15(2), 243-252.  

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., & Bertsekas, D. P. (1995). Dynamic 

programming and optimal control (Vol. 1): Athena Scientific Belmont, MA. 

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview 

and conceptual comparison. ACM Computing Surveys (CSUR), 35(3), 268-308.  

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to 

artificial systems: Oxford university press. 

Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and 

convergence in a multidimensional complex space. Evolutionary Computation, 

IEEE Transactions on, 6(1), 58-73.  

Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed stigmergetic control for 

communications networks. Journal of Artificial Intelligence Research, 317-365.  

Eigen, M. (1973). Ingo Rechenberg Evolutionsstrategie Optimierung technischer 

Systeme nach Prinzipien der biologishen Evolution: mit einem Nachwort von 

Manfred Eigen, Friedrich Frommann Verlag, Struttgart-Bad Cannstatt. 

Farmer, J. D., Packard, N. H., & Perelson, A. S. (1986). The immune system, 

adaptation, and machine learning. Physica D: Nonlinear Phenomena, 22(1), 

187-204.  

Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: a 

metaheuristic approach to solve structural optimization problems. Engineering 

with computers, 29(1), 17-35.  

Ghanem, R. G., & Spanos, P. D. (2003). Stochastic finite elements: a spectral 

approach: Courier Corporation. 

Haftka, R. T., & Gürdal, Z. (2012). Elements of structural optimization (Vol. 11): 

Springer Science & Business Media. 

Helsgaun, K. (2000). An effective implementation of the Lin–Kernighan traveling 

salesman heuristic. European Journal of Operational Research, 126(1), 106-

130.  

Hurwitz, C., & Craig, R. GNU tsp solve version 1.4. Computer software, http://www. 

or. deis. unibo. it/research_pages/tspsoft. html.  

Karaboga, D., & Akay, B. (2009). A survey: algorithms simulating bee swarm 

intelligence. Artificial Intelligence Review, 31(1-4), 61-85.  

Karp, R. M., & Steele, J. M. (1985). Probabilistic analysis of heuristics. The traveling 

salesman problem, 181-205.  

Kennedy, J. (2010). Particle swarm optimization Encyclopedia of Machine Learning 

(pp. 760-766): Springer. 

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated 

annealing. science, 220(4598), 671-680.  

http://www/


African buffalo optimization 

49 

 

Kumbharana, N., & Pandey, G. M. (2013). A Comparative Study of ACO, GA and SA 

for Solving Travelling Salesman Problem. International Journal of Societal 

Applications of Computer Science, 2(2), 224-228.  

Luenberger, D. G. (1973). Introduction to linear and nonlinear programming (Vol. 28): 

Addison-Wesley Reading, MA. 

Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search 

algorithm for solving optimization problems. Applied mathematics and 

computation, 188(2), 1567-1579.  

Marinakis, Y., Marinaki, M., & Dounias, G. (2011). Honey bees mating optimization 

algorithm for the Euclidean traveling salesman problem. Information Sciences, 

181(20), 4684-4698.  

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in 

Engineering Software, 69, 46-61.  

Olafsson, S. (2006). Metaheuristics. Handbooks in operations research and 

management science, 13, 633-654.  

Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2011). The Bees 

Algorithm–A Novel Tool for Complex Optimisation. Paper presented at the 

Intelligent Production Machines and Systems-2nd I* PROMS Virtual 

International Conference 3-14 July 2006. 

Prins, H. (1996). Ecology and behaviour of the African buffalo: social inequality and 

decision making (Vol. 1): Springer Science & Business Media. 

Rani, D., Jain, S. K., Srivastava, D. K., & Perumal, M. (2012). 3 Genetic Algorithms 

and Their Applications to Water Resources Systems. Metaheuristics in Water, 

Geotechnical and Transport Engineering, 43.  

Reinelt, G. (1991). TSPLIB—A traveling salesman problem library. ORSA journal on 

computing, 3(4), 376-384.  

Rocha, A. M. A., Fernandes, E. M., & Soares, J. L. C. (2004). Solution of asymmetric 

traveling salesman problems combining the volume and simplex algorithms.  

Said, Y., & Wegman, E. (2009). Roadmap for optimization. Wiley Interdisciplinary 

Reviews: Computational Statistics, 1(1), 3-17.  

Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic 

algorithms. Paper presented at the Proceedings of the 1st International 

Conference on Genetic Algorithms, Pittsburgh, PA, USA, July 1985. 

Stueckle, S., & Zinner, D. (2008). To follow or not to follow: decision making and 

leadership during the morning departure in chacma baboons. Animal Behaviour, 

75(6), 1995-2004.  

Suchal, J., & Návrat, P. (2010). Full text search engine as scalable k-nearest neighbor 

recommendation system Artificial Intelligence in Theory and Practice III (pp. 

165-173): Springer. 

Van der Cruyssen, P., & Rijckaert, M. (1978). Heuristic for the asymmetric travelling 

salesman problem. Journal of the Operational Research Society, 697-701.  

Vanderplaats, G. N. (2007). Multidiscipline design optimization: Vanderplaats Research 

& Development, Incorporated. 

Venter, G. (2010). Review of optimization techniques. Encyclopedia of aerospace 

engineering.  

Wilson, D. S. (1997). Altruism and organism: Disentangling the themes of multilevel 

selection theory. The American Naturalist, 150(S1), s122-S134.  

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. 

Evolutionary Computation, IEEE Transactions on, 1(1), 67-82.  



Julius Beneoluchi Odili et.al /International Journal of Software Engineering & Computer Systems 2(2016) 28-50 

50 

 

Yang, X.-S. (2011). Review of meta-heuristics and generalised evolutionary walk 

algorithm. International Journal of Bio-Inspired Computation, 3(2), 77-84.  

Zang, H., Zhang, S., & Hapeshi, K. (2010). A review of nature-inspired algorithms. 

Journal of Bionic Engineering, 7, S232-S237.  

Zheng, R. T., Ngo, N., Shum, P., Tjin, S., & Binh, L. (2005). A staged continuous tabu 

search algorithm for the global optimization and its applications to the design of 

fiber bragg gratings. Computational Optimization and Applications, 30(3), 319-

335.  

 

 

 

 

 

 

 

 

 

 

 

 


