IJSECS-3-009

 
PARAMETER-LESS SIMULATED KALMAN FILTER

Nor Hidayati Abdul Aziz1,2, Zuwairie Ibrahim2, Nor Azlina Ab. Aziz1 and Saifudin Razali2
 
1Faculty of Engineering and Technology, Multimedia University
Bukit Beruang, Melaka, Malaysia
2Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang
Pekan, Pahang, Malaysia
 
ABSTRACT

Simulated Kalman Filter (SKF) algorithm is a new population-based metaheuristic optimization algorithm. In the original SKF algorithm, three parameter values are assigned during initialization, the initial error covariance, P(0), the process noise, Q, and the measurement noise, R. Further studies on the effect of P(0), Q and R values suggest that the SKF algorithm can be realized as a parameter-less algorithm. Instead of using constant values suggested for the parameters, this study uses random values for all three parameters, P(0), Q and R. Experimental results show that the parameter-less SKF managed to converge to near-optimal solution and performs as good as the original SKF algorithm.


Keywords: Optimization, Simulated Kalman Filter, Parameter-less

 

pdf ico FULL PAPER

 

 

 

 

 
 
 
 
 

Contact Us

Managing Editor of IJSECS
Faculty of Computer Systems & Software Engineering (FSKKP)

Universiti Malaysia Pahang
Lebuhraya Tun Razak
26300 Gambang,
Kuantan, Pahang Darul Makmur.

Tel: +609 549 2133
Fax: +609 549 2144
Email: ijsecsfskkp@ump.edu.my

Visitor Counter

0034240
Today
Yesterday
This Week
Last Week
This Month
Last Month
All days
34
60
131
375
1111
1540
34240